<u>Module on Atomic Force Microscopy (AFM)</u>

By

E. A. Leone

Brief History

Scanning Tunneling Microscope (STM)

- Developed in 1982 by Binning, Rohrer, and Weibel at IBM Zurich, Switzerland
- Binning and Rohrer won the Nobel Prize in Physics in 1986

- Atomic Force Microscope (AFM)

Developed in 1986 by Binning, Quate, and Gerber, as a collaboration between IBM and Stanford University

Definitions

- Scanning Probe Microscope (SPM)

 Family of microscopies where a sharp probe is scanned across a surface and the probe/ sample interactions are monitored

- There are Two Major Forms of SPM

- 1. STM
- 2. AFM

- There are 3 Major forms of AFM

- Contact Mode AFM
- Non-Contact mode
- Tapping Mode

Figure 4.0a Feedback Loop Electronics

- Tapping Mode AFM
- Cantilever oscillates at about 200 kHz with amplitude of about 20-100 nm
- Feedback is constant RMS amplitude of the Photodiode detector
- Piezo moves z to obtain topographic image

Contact mode AFM
Lateral Force
TappingMode AFM
Non-contact AFM
Force-volume imaging
Magnetic Force
Electric Field
Surface Potential
Scanning Tunneling Microscopy
Operation in fluid
Phase Imaging
Quadrex ³
Scanning Capacitance
Conductive AFM
Nanolithography
NanoManipulation
4-point probe
NanoIndentation
Scanning Spreading resistance
Torsional Resosnance Mode

 A number of SPM Probes are Available to use for Nanotechnology Characterization

500 Å Metal Oxide on Silicon Wafer

Nano Indentation with AFM

Atomic Force Microscopy (AFM) Analysis – Nano Scratching in Gold

AFM Summary

- AFM used to observe the surface morphology at high magnifications.
- Accurate height (roughness) measurements can be made.
- A large range of "modules" are available to measure a number of surface properties.